Energy Storage

Platform Technologies for Changing the Game

Dane Boysen

Mark Johnson

Srinivas Mirmira

Transportation

Energy Density
Cost
Cycle life
Stability

Control Systems

Sense Model Control

Power Grid

Cost
Capacity (power)
Duration
Reliability

Transportation

Increase Adoption of Electric Vehicles

2010 U.S. Petroleum Demand

Tesla Model S

Metric	Units	85 kWh
<u>Vehicle</u>		
Price	\$	70,000
Range	mi	300
<u>Battery</u>		
Total cost*	\$/pack	43,000
Cell/pack energy density*	Wh/kg	200/120
Cell/pack cost*	\$/kWh	300/500

^{*} Estimated

Source: http://www.teslamotors.com/models/options

Challenge: Current batteries are too expensive and low energy density

Opportunity: New battery chemistries with 2-5x the energy density

BEEST Program

Batteries for Electrical Energy Storage for Transportation

Objectives

- Cost-competitive with traditional cars
- 30% of today's cost at 2-5x energy storage
- 300-500% longer battery life + range

2-5x performance + 1/3 price

Power Grid

Electric Grid Energy Storage

GRIDS Program

Grid-scale Rampable Intermittent Dispatchable Storage

Challenge:

Balance & Firm Renewable Generation at High Penetration (>20%) on the Power Grid

GRIDS Technologies

Minimum Response Time

Seconds

Minutes

GRIDS Projects

General Compression

Isothermal Compression: technology bridge to commercial follow-on

University of Southern California

Iron-Air Battery: iron is cheap, air is free

United Technologies

Ultra-high Power Density Flow Battery

City University of New York

Cheap Recyclable
Alkaline Battery

Robust Control of Energy Storage

State-of-the-art

- Sensing limited to very few measurements (I, V, T)
- Non-representative generic ECM &rule-based control algorithms
- Inaccurate estimation of SOH
- Lack of reliable safety and lifetime indicators

U.S. military battery "graveyard" in Iraq

- Restricted utilization & Reduced Lifetime
- Prohibits secondary market use
- Use of sub-optimal technologies

Advanced Energy Management Systems

Maximize performance of energy storage by Sensing, Modeling, & Control

RFI on Robust Control of Energy Storage - issued February 17, 2012

What makes an ARPA-E project?

1. Impact

- High impact on ARPA-E mission areas
- Credible path to market
- Large commercial application

2. Transform

- Challenges what is possible
- Disrupts existing learning curves
- Leaps beyond today's technologies

i Bioes

- Between basic science and applied technology
- Not researched or funded elsewhere
- Catalyzes new interest and investment

- Best-in-class people
- Cross-disciplinary skill sets
 - Translation oriented

Thank you

